European PreInstrumental Earthquake CAtalogue

EPICA v.1.1 - Description


  1. Introduction
  2. Input data
  3. Earthquake parameters
  4. Comparison with SHEEC 1000-1899
  5. References

Download the
PDF of this page

1. Introduction

The European PreInstrumental earthquake CAtalogue EPICA (Rovida and Antonucci, 2021) is the 1000-1899 seismic catalogue compiled for the European Seismic Hazard Model 2020 (ESHM20) within the framework of the EU-H2020 project “Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe” (SERA). EPICA is the update of SHEEC 1000-1899 (Stucchi et al., 2013), with which it shares the main principles - mostly transparency, repeatability, and continent wide harmonization of data – as well as the compilation strategies and methods.

EPICA version 1.1 contains 5703 earthquakes with either maximum intensity ≥5 or Mw ≥4.0. The spatial coverage of EPICA is from the Atlantic Ocean to the west to 32°E in longitude and from the Mediterranean Sea to northernmost Europe. It is based on 160 sources of MDPs and 39 regional catalogues.

EPICA relies upon the updated knowledge of European preinstrumental seismicity provided by the data gathered in the European Archive of Historical Earthquake Data AHEAD (Albini et al. 2013; Locati et al. 2014; Rovida and Locati, 2015). Such data are both macroseismic intensity data (MDP, Macroseismic Data Point) supplied by descriptive historical seismological studies and macroseismic databases, and parameters contained in regional catalogues. AHEAD deals with the multiplicity of data referring to the same earthquake and providing diverse information. For the compilation of both SHEEC 1000-1899 and EPICA such datasets were thoroughly analyzed in order to select the most representative of the knowledge of each earthquake, independently from national constraints. Selected MDPs sets are processed with the same three methods as in SHEEC 1000-1899 (Stucchi et al., 2013; Gomez Capera et al., 2015; see below), that determine the earthquake magnitude and the epi- or hypocentral location based on the attenuation of macroseismic intensity. For each method, regional attenuation models were calibrated with the same set of modern events with known instrumental magnitude and reliable MDPs distributions. In addition, parameters from modern regional catalogues, selected from AHEAD according to their reliability and with preference to publicly available ones, are also considered. Parameters from both MDPs and regional catalogues are listed in EPICA when available, and are accompanied by a set of final parameters. These final parameters consist of locations selected from those calculated from MDPs or derived from regional catalogues according to a priority scheme, and Mw value and related uncertainty assessed as i) the weighted mean of the determinations from MDPs and from the regional catalogue when they are both available, or derived either ii) from MDPs or iii) from regional catalogues.
The compilation procedure of EPICA is summarized in Figure 1.

workflow of the compilation of EPICA v. 1.1
Figure 1: workflow of the compilation of EPICA v. 1.1 (from Rovida et al., 2022).

As a whole, out of the 5703 earthquakes in EPICA, 3622 (i.e the 64%) are supported by MDPs (Figure 2), with a total of 49852 considered MDPs, whereas 5511 (i.e the 97%) derive from a regional catalogue. In particular, for 3445 earthquakes both MDPs and a parametric catalogue are available, while 2066 earthquakes (36% of the total) are known from parametric catalogues only. Conversely, there are 177 earthquakes (3% of the total) known through an historical seismological study that are not included in any modern, published regional catalogue.

EPICA version 1.1 (Rovida and Antonucci, 2021) is distributed at https://www.emidius.eu/epica/ in different formats, and is contained in AHEAD.

number of MDPs for each earthquake in EPICA
Figure 2: number of MDPs for each earthquake in EPICA.

2. Input data

AHEAD provided EPICA version 1.1 with 160 sources of MDPs and 39 parametric catalogues, listed here

Between the publication of SHEEC 1000-1899 in 2012 and the end of the compilation of EPICA in 2018 several new MDPs sets and updated earthquake catalogues were published. Among the regional nodes contributing data to AHEAD, the Italian Archive of Historical Earthquake Data ASMI(Rovida et al., 2017) and the French macroseismic database SisFrance (BRGM-EDF-IRSN/SisFrance, 2016) underwent significant updates. At the same time, the results of several investigations on single earthquakes, areas and/or periods have become available in the scientific literature. As a whole, 81 new sources of data contributed to the updated version of AHEAD released in May 2021, and introduced 1488 earthquakes not considered before.

Out of the 160 sources of MDPs considered in EPICA, 46 (Table 1; Figure 3) studies providing MDPs to 2014 earthquakes are not among those used for SHEEC 1000-1899, mostly because they are more recent or, in 10 cases, they were already available but not considered. The latter are mostly studies on Italian earthquakes, because ASMI did not yet exist at that time and the Italian portion of AHEAD was less updated than the rest of Europe. It is worth mentioning that SisFrance2016 and the latest version of the Catalogue of Strong Italian Earthquakes (CFTI5med; Guidoboni et al., 2018; 2019) are considered as new studies, although most of their content is the same of the previous versions.

Table 1: sources of MDPs in EPICA v. 1.1 that were not used for SHEEC 1000-1899. CODE: code used in the catalogue file; EQS: number of earthquakes in EPICA; MDPs: total number of contributed MDPs
Code Reference EQS MDPs
ALBAL017 Albini P., Rovida A., Scotti O., Lyon-Caen H., 2017. Large Eighteenth–Nineteenth Century Earthquakes in Western Gulf of Corinth with Reappraised Size and Location. Bulletin of the Seismological Society of America 107, 4, 1663–1687. https://doi.org/10.1785/0120160181 5 144
ALBI015 Albini P., 2015. The Great 1667 Dalmatia Earthquake - An In-Depth Case Study. SpringerBriefs in Earth Sciences, 110pp. https://doi.org/10.1007/978-3-319-16208-9 1 37
ALBRO018 Albini P., Rovida A., 2018. Earthquakes in southern Dalmatia and coastal Montenegro before the large 6 April 1667 event. Journal of Seismology, 22, 3, 721-754. https://doi.org/10.1007/s10950-018-9730-4 15 34
ALEAX018 Alexandre P., Alexandre D., 2018. Les séismes en Europe orientale au Moyen Âge (suite): Les tremblement de terre du 5 Juin 1443 et du 29 Août 1471 - Les séismes en Prusse et en Dalmatie. Ciel et Terre 134, 1, 2-20. 1 23
AZZCA015 Azzaro R., Castelli V., 2015. Materiali per un catalogo di terremoti etnei dal 1600 al 1831. Quaderni di Geofisica, 123, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Roma, 284 pp. 12 24
BAPAL014 Baptista M.A., Miranda J.M., Batlló J., 2014. The 1531 Lisbon Earthquake: A Tsunami in the Tagus Estuary? Bulletin of the Seismological Society of America 104, 5, 2149-2161. https://doi.org/10.1785/0120130316. 1 32
BARAL017 Barbano M.S., Castelli V., Pirrotta C., 2017. Materiali per un catalogo di eruzioni di Vulcano e di terremoti delle Isole Eolie e della Sicilia nordorientale (secc. XV-XIX). Quaderni di Geofisica, 143, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Roma, 238pp. 25 211
CAMA014 Camassi R., 2014. Revisione della sismicità storica del Lodigiano. Rapporto interno, Istituto Nazionale di Geofisica e Vulcanologia, 26 pp. 1 10
CAMAL011a Camassi R., Rossi A., Tertulliani A., Pessina V., Caracciolo C. H., 2011. Il terremoto del 30 ottobre 1901 e la sismicità del versante occidentale del Garda. Quaderni di Geofisica, 88, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Roma, 36 pp. 2 33
CAMAL011b Camassi R., Castelli V., Molin D., Bernardini F., Caracciolo C. H., Ercolani E., Postpischl L., 2011. Materiali per un catalogo dei terremoti italiani: eventi sconosciuti, rivalutati o riscoperti. Quaderni di Geofisica, 96, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Roma, 53 pp. 230 1017
CAMAL011c Camassi R., Caracciolo C.H., Castelli V., Slejko D., 2011. The 1511 Eastern Alps earthquakes: a critical update and comparison of existing macroseismic datasets. J. Seismol., 15, 191-213. https://doi.org/10.1007/s10950-010-9220-9 11 146
CAMAL012 Camassi R., Caracciolo C.H., Castelli V., Ercolani E., Bernardini F., Albini P., Rovida A., 2012. Contributo INGV al WP2 del progetto HAREIA - Historical and Recent Earthquakes in Italy and Austria: Studio della sismicità storica del Friuli Venezia-Giulia, Veneto e Alto Adige. Rapporto finale, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Bologna, 23 pp. + 5 Allegati 34 161
CAMAL015 Camassi R., Castelli V., Caracciolo C.H., Ercolani E., Bernardini F., 2015. Revisione speditiva di alcuni terremoti di area nord occidentale. Rapporto interno, Istituto Nazionale di Geofisica e Vulcanologia, 52 pp. 8 35
CARA014 Caracciolo C.H., 2014. Il terremoto di Clana del 1 marzo 1870. Rapporto interno, Istituto Nazionale di Geofisica e Vulcanologia, 5 pp. 1 2
CARAL009 Caracciolo C.H., Camassi R., Castelli V., 2009. Revisione e integrazione sistematica di terremoti che interessano il territorio della Pianura Padana centro-orientale. Rapporto interno, Istituto Nazionale di Geofisica e Vulcanologia, 26 pp. 4 229
CARAL015 Caracciolo C.H., Camassi R., Castelli V., 2015. Il terremoto del 25 gennaio 1348 (Alpi orientali). Rapporto interno, Istituto Nazionale di Geofisica e Vulcanologia, 12 pp. 1 90
CASAL012 Castelli V., Camassi R., Molin D., 2012. The Uzège (Southeastern France) 22 March 1186 Earthquake Reappraised. Seismological Research Letters, 83, 3, 604-614. https://doi.org/10.1785/gssrl.83.3.604 1 4
CASAL016 Castelli V., Camassi R., Cattaneo M., Cece F., Menichetti M., Sannipoli E. A., Monachesi G., 2016. Materiali per una storia sismica del territorio di Gubbio: terremoti noti e ignoti, riscoperti e rivalutati. Quaderni di Geofisica, 133, 200 pp. 7 45
CAST015 Castelli V., 2015. Il terremoto del 13 giugno 1494 (Alpi marittime). Rapporto interno, Istituto Nazionale di Geofisica e Vulcanologia, 4 pp. 1 2
CAST997 Castelli V., 1997. Analisi attraverso i repertori di terremoti verificatisi in area campana, matese e lucana prima del 1691. 11 ottobre 1125 - Benevento. Rapporto interno, Istituto Nazionale di Geofisica e Vulcanologia, 7 pp. 1 1
CECI015 Cecić I., 2015. Earthquakes in Tuhinj Valley (Slovenia) in 1840. Journal of Seismology, 19, 469-490. https://doi.org/10.1007/s10950-015-9477-0 2 54
CFTI5med Guidoboni E., Ferrari G., Mariotti D., Comastri A., Tarabusi G., Sgattoni G., Valensise G., 2018. CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.-1997) e nell'area Mediterranea (760 a.C.-1500). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.6092/ingv.it-cfti5 430 14026
CORRI007 Correia A.P. and Ribeiro J., 2007. Alguns sismos inéditos ocorridos em Portugal e Galiza entre Junho e Agosto de 1858. Sismos e Imprensa. 3-7. 2 29
GALL016 Galli P., 2016. The little-known earthquakes of 1643 in Sicily. Alpine and Mediterranean Quaternary, 29, 1, 35-44. 3 7
GALNA008 Galli P., Naso G., 2008. The “taranta” effect of the 1743 earthquake in Salento (Apulia, southern Italy). Bollettino di Geofisica Teorica ed Applicata 49, 2, 177-204. 1 84
GALNA009 Galli P., Naso J.A., 2009. Unmasking the 1349 earthquake source (southern Italy): paleoseismological and archaeoseismological indications from the Aquae Iuliae fault. Journal of Structural Geology 31, 128-149. https://doi.org/10.1016/j.jsg.2008.09.007 1 24
GUICI011 Guidoboni E., Ciuccarelli C., 2011. The Campi Flegrei caldera: historical revision and new data on seismic crises, bradyseisms, the Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 AD). Bulletin of Volcanology, 73, 655–677. https://doi.org/10.1007/s00445-010-0430-3 29 58
HAMLE013 Hammerl Ch., Lenhardt W.A., 2013. Erdbeben in Niederösterreich von 1000 bis 2009 n. Chr. Abhandlungen Der Geologischen Bundesanstalt 67, Wien, 297 pp. 33 716
HAMM015 Hammerl C., 2015. The four strongest earthquakes in Tyrol/ Austria during XVIth and XVIIth centuries: from archival sources to macroseismic intensities. Acta Geodaetica et Geophysica, 50, 1, 39-62. https://doi.org/10.1007/s40328-014-0083-3 3 43
HERAL017 Herak D., Sović I., Cecić I., Živčić M., Dasović I., Herak M., 2017. Historical Seismicity of the Rijeka Region (Northwest External Dinarides, Croatia) - Part I: Earthquakes of 1750, 1838, and 1904 in the Bakar Epicentral Area. Seismological Research Letters 88, 3, 904-915. https://doi.org/10.1785/0220170014 11 33
HERAL018 Herak M., Živčić M., Sović I., Cecić I., Dasović I., Stipčević J., Herak D., 2018. Historical Seismicity of the Rijeka Region (Northwest External Dinarides, Croatia) - Part II: The Klana Earthquakes of 1870. Seismological Research Letters, 89, 1524-1536. https://doi.org/10.1785/0220180064 5 121
KNUAL015 Knuts E., Alexandre P., Camelbeeck T., 2015. Le séisme luxembourgeois du 13 avril 1733: nouvelles recherches. Ciel et Terre, 131, 130-137. 1 15
KNUAL016 Knuts E., Camelbeeck T., Alexandre P., 2016. The 3 December 1828 moderate earthquake at the border between Belgium and Germany. Journal of Seismology 20, 419-437. https://doi.org/10.1007/s10950-015-9535-7 1 75
MOLAL008 Molin D., Bernardini F., Camassi R., Caracciolo C.H., Castelli V., Ercolani E., Postpischl L., 2008. Materiali per un catalogo dei terremoti italiani: revisione della sismicità minore del territorio nazionale. Quaderni di Geofisica, 57, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Roma, 75 pp. 306 2765
MONAL016 Monachesi G., Castelli V., Camassi R., 2016. Aggiornamento delle conoscenze sul terremoto del 28 luglio 1799 nel sub-Appennino maceratese. Quaderni di Geofisica, 138, 212 pp. 2 145
PESAL013 Pessina V., Tertulliani A., Camassi R., Rossi A., Scardia G., 2013. The revision of the October 30, 1901 earthquake, west of Lake Garda (northern Italy). Bollettino di Geofisica Teorica ed Applicata 54 1, 77-110. https://doi.org/10.4430/bgta0083 2 136
RIBAL015 Ribeiro J.R., Ribeiro A.I., Correia A.P., 2015. Solving the Mystery: The 21 October 1880 Portuguese Earthquake. Seismological Research Letters, 86, 3, 8 pp. + appendices. https://doi.org/10.1785/0220140178 1 88
ROSTE015 Rossi A., Tertulliani A., 2015. I terremoti del 24 e 26 dicembre 1885 in Molise e Basilicata. Rapporto interno, Istituto Nazionale di Geofisica e Vulcanologia, 6 pp. 2 35
SAVAL011 Savarese F., Tertulliani A., Galadini F., 2011. Le fonti sul terremoto del 10 settembre 1881 in provincia di Chieti: revisione critica e nuove conoscenze. Bullettino della Deputazione Abruzzese di Storia Patria, Annata CII (CXXIII dell'intera collezione), L'Aquila, pp. 155-177. 1 43
SCHAL018 Schwarz-Zanetti G., Fäh D., Gache S., Kästli P., Loizeau J., Masciadri V. and Zenhäusern G., 2018. Two large earthquakes in western Switzerland in the sixteenth century: 1524 in Ardon (VS) and 1584 in Aigle (VD). J. Seismol. 22, 439-455. https://doi.org/10.1007/s10950-017-9715-8 3 55
SCIAL006 Scionti V., Galli P., Chiodo G., 2006. The Calabrian seismicity during the Viceroyalty of Naples: sources silence or silent sources? The case of the strong 1744 earthquake. Bollettino di Geofisica Teorica e Applicata 47, 1-2, 53-72. 3 36
SISFR016 BRGM-EDF-IRSN/SisFrance, 2016. Histoire et caractéristiques des séismes ressentis en France. 805 8832
TATAL013 Tatevossian R.E., Tatevossian T.N., Mäntyniemi P., 2013. Earthquake activity in Finland and the Russian North in December 1758: rare reports and their interpretation. Annals of Geophysics 56, 5, S0558. https://doi.org/10.4401/ag-5829 2 5
TERAL009 Tertulliani A., Rossi A., Cucci L., Vecchi M., 2009. L'Aquila (Central Italy) Earthquakes: The predecessors of the April 6, 2009 Event. Seismological Research Letters 80, 6, 1008-1013. https://doi.org/10.1785/gssrl.80.6.1008 1 8
TERAL012a Tertulliani A., Cucci L., Rossi A., Castelli V., 2012. The 6 October 1762 Middle Aterno Valley (L'Aquila, Central Italy) Earthquake: New Constraints and New Insights. Seismological Research Letters, 83, 6. https://doi.org/10.1785/0220120048 1 13
TERCU014 Tertulliani A., Cucci L., 2014. Presentazione e analisi critica dei dati storici di base del terremoto dell'8 gennaio 1693 nel Pollino. Quaderni di Geofisica, 117, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Roma, 44 pp. 1 16
TOTAL   2014 29742
earthquakes with new sources of MDPs in EPICA v. 1.1
Figure 3: earthquakes with new sources of MDPs in EPICA v. 1.1.

EPICA also relies upon 39 regional catalogues (listed in Table 5), related to 5511 earthquakes. For guaranteeing transparency, EPICA exclusively relies upon published catalogues, i.e. those made publicly available through a scientific publication and/or a website. Following this principle and for the period of interest (1000-1899), only the four catalogues listed below have been published since 2012 and were considered for EPICA, in addition or substitution of those contributing to SHEEC 1000-1899:

3. Earthquake parameters

Parameters in EPICA are assessed as in SHEEC 1000-1899, and derive from two sets:

  1. macroseismic data (MDPs) with homogeneous and repeatable procedures
  2. regional catalogues, coherently with 1

The two sets of data are then combined in the final parameters selecting the location from either set 1 or 2 according to a priority scheme, and determining the magnitude as i) the weighted mean of those resulting from sets 1 and 2, ii) from set 1, or iii) from set 2, depending on the availability.

All the parameters derived from both set 1 and set 2 are listed in the catalogue file, together with the final parameters, as shown here. The event identifiers are the same of AHEAD, and the identifier in SHEEC 1000-1899 is reported for the common events.

3.1 Parameters from MDPs

A set of parameters (location with uncertainty, epicentral intensity, and magnitude) from MDPs, referred to as set 1 above, is determined for 3297 earthquakes out of the 3622 for which MDPs are available. This means that for 325 earthquakes the intensity distributions are not reliable enough to obtain robust parameters.

Macroseismic parameters are assessed with the same three methods as in SHEEC 1000-1899, i.e Boxer (Gasperini et al., 1999; 2010), Meep (Musson and Jimenéz, 2008) and BW (Bakun and Wentworth, 1997). The calibrations of the methods are defined for different attenuation regions (Figure 4) and are the same as in SHEEC 1000-1899 with the only exception of the updated calibration of Boxer realized for CPTI15 (Rovida et al., 2016; 2020) that substitutes the calibration of the previous version of CPTI in the APD (Apennine-Dinarides) region. In addition, the new I0 to Mw conversion strategy of CPTI15 is adopted in the newly defined Italian Volcanic Areas (IVA) region (Figure 4).

The choice of the method was mostly in favour of Boxer, with Meep and BW used as exceptions respectively for all the events in the UK and for a few offshore events. The summary of the parameters assessed with the three methods in the five regions is shown in Table 2.

calibration regions
Figure 4: calibration regions in EPICA version 1.1.
Table 2: summary of the parameters determined from MPDs by method and calibration region
Boxer 1349 355 52 767   662 3185
BW   28   1 1   30
Meep       82     82
Total 1349 383 52 850 1 662 3297

In each calibration region, a linear conversion relation from epicentral intensity I0 to Mw (Table 3) is derived from the same datasets used for calibrating the three MDPs methods (Gomez Capera et al., 2015; Rovida et al., 2020).

Table 3: I0 to Mw relationships derived for the different calibration regions by Gomez Capera et al. (2015), apart from APD, derived by Rovida et al. (2020).
Region Equation σ
BET Mw = 1.487 + 0.552 * I0 0.38
SCR Mw = 0.528 + 0.655 * I0 0.25
WAP Mw = 1.441 + 0.502 * I0 0.31
APD Mw = 1.827 + 0.467 * I0 0.11
BAS Mw = 3.404 + 0.355 * I0 0.32

The new I0 to Mw conversion strategy of CPTI15 (Rovida et al., 2016; 2020) for the IVA region (Mt. Etna and Vesuvius-Phlegrean Fields) consists first in the determination of local magnitude from I0 with the relation by Azzaro et al. (2011), which is then converted to Mw with two relations respectively for Etna (Tuvè et al., 2015) and Vesuvius-Phlegrean Fields (Petrosino et al., 2008).

3.2 Parameters from regional catalogues

Out of the 39 selected catalogues, 38 provide parameters (location and epicentral intensity or magnitude, or both) for 5251 earthquakes. In EPICA, locations from the catalogues are adopted without any modifications, whereas for the earthquake size the same strategy of SHEEC 1000-1899 is applied, as follows:

Table 4 summarizes the origin of Mw values from the selected regional catalogues divided by calibration regions. Table 5 lists the selected catalogue and the magnitude conversion adopted.

Table 4: origin of Mw values from the selected regional catalogues divided by calibration regions.
Type APD BAS BET SCR WAP Other areas Total
Original Mw 1277 316 13 763 756 191 3316
From I0 465 235 254 804 73 1831
From Ms 38 38
From ml 18 18
Uspecified       23   25 48
Total 1742 551 267 1646 829 216 5251
Table 5: selected catalogues and adopted magnitude conversion.
Catalogue Mw Original From I0 From Ms From ML Unspecified
CPTI15 (Rovida et al., 2016; 2020) 1444
ECOS-09 (Fäh et al., 2011) 711
FCAT-17 (ManchUel et al., 2018) 656
Papazachos and Papazachou (2003) 332
Musson and  Sargeant (2007) 67
Oncescu et al. (1999) 64 58
Martinez Solares and Mezcua Rodriguez (2002) 19 327 1
Olivera et al. (2006) 8 9
EMEC (Grünthal and Wahlström, 2012) 8
Vilanova and Fonseca (2007) 4
Kondorskaya and Ulomov (1999) 1
Martinez Solares and Lopez Arroyo (2004) 1
Pelaez et al. (2007) 1
Živčić (2009) 308
Leydecker (2011) 236
Zsìros et al. (1988) 186
Herak (1995) 158
Soysal et al. (1981) 152
ZAMG (2010) 86
Labak and Broucek (1995) 70
Sulstarova and Kociu (1975) 56
University of Helsinki (2007) 49 38
Shebalin and Leydecker (1998) 37
LNEC (1986) 20 4
Meidow (1995) 15
Grigorova et al. (1978) 13
Observatoire Royal de Belgique (2010) 12
Kondorskaya and Shebalin (1982 11
Grünthal (1988) 8
Hammerl and Lenhardt (2013) 7
Boborikin et al. (1993) 6
Pagaczewski (1972) 4
Shebalin et al. (1974) 2
Nikonov (1992) 1
Musson (1994) 18
Martins and Mendes Victor (2001) 22
Icelandic Meteorological Office (2007) 13
Ambraseys and Sigbjörnsson (2000) 8
TOTAL 3316 1831 38 18 48

Among the considered regional catalogues, only ECOS-09, F-CAT17, CPTI15, and Papazachos and Papazachou (2003) provide magnitude uncertainties, all of which are reported in EPICA. For the other catalogues uncertainties are those associated to the conversion relation from I0 or they are assumed as 0.3 or 0.5 in the other cases.

3.3 Final parameters

Taking into account the selected datasets and the two sets of parameters described above, the final parameters in EPICA are determined as described in the following, where the names of the respective fields in the catalogues file (see here) are indicated in parentheses.

Time (Year, Mo, Da, Ho, Mi)

The time of occurrence of each earthquake derives from the selected dataset.

Location and uncertainty (Lat, Lon, TEpi, LatUnc, LonUnc, TEpiUnc)

The epicentral location is selected between set 1 and set 2 (see above), according to the following criteria:

In EPICA, 3297 (57.8%) epicentres are from MDPs (set 1), and 2257 (39.6%) from the selected regional catalogue (set 2). In addition, 149 epicentres (2.6%), marked as “preliminary”, relate to earthquakes for which the available data do not allow a robust determination of the location. Among the locations from MDPs, 3187 are from Boxer, 82 from Meep, and 28 from BW (Figure 5).
origin of the epicentral coordinates
Figure 5: origin of the epicentral coordinates in EPICA.

The uncertainty associated to epicentral locations from set 1 are determined for 1944 earthquakes with the relevant method, namely 1869 with Boxer and 75 with Meep. Both Boxer and Meep calculate epicentral uncertainty only with a sufficient number of data, whereas BW does not. When the uncertainties is not assessed, a default value of 30 km is assigned to epicentres of onshore earthquakes, and of 50 km for offshore ones. For set 2, the uncertainty of epicentral location is taken from the selected catalogues (854 earthquakes) when provided and expressed in km, otherwise it is converted into km from degrees (116 earthquakes). Default values of 39.9 (for onshore earthquakes), 49.9 (for offshore earthquakes), or 99.9 km (when the catalogue proposes “undefined” uncertainty or values/classes >50 km) are adopted for 1158 earthquakes for which the selected catalogue does not provide epicentral uncertainty. Location uncertainty is not provided for 278 earthquakes.

Depth (H, Hunc, TH)

The assessment of the focal depth of historical earthquakes is controversial and affected by high uncertainties. For this reason, depth is provided for 738 earthquakes, only, and is mostly (635 earthquakes) derived from regional catalogues. Hypocentral depth from MDPs distributions is available only for the 82 earthquakes located with Meep, because neither Boxer nor BW calculate it. Meep provides depth uncertainty for 25 earthquakes.
The areas defined as BAI and VRD in the field “Reg” of the catalogue file respectively indicate intermediate and deep earthquakes of the Aegean and Vrancea regions, although the hypocentral depth is not always expressed.

Magnitude (Mw, MwUnc, TMw)

Magnitude is determined as follows:

  1. When Mw determinations from set 1 and from set 2 are both available, they are combined through the weighted mean of the two values, with arbitrary weights of 0.75 and 0.25 attributed to the Mw from MPDs and from the regional catalogue, respectively. In continuity with SHEEC 1000-1899, reverse weights were given to ECOS-09 and CPTI15.
  2. When only the Mw from set 1 is available, it is adopted
  3. When only the Mw from set 2 is available, it is adopted.

Mw is determined as the weighted mean for 3127 earthquakes (55% of the total), it derives from a regional catalogue for 2124 (37%) earthquakes, and from MDPs for 170 (3%) of them (Figure 6). In addition, Mw is not determined for 282 earthquakes because the data they rely upon are not enough robust.

origin of the epicentral coordinates
Figure 6: origin of the magnitude in EPICA.

All the Mw estimates in EPICA are accompanied with their uncertainties, determined as follows:

Figure 7 shows the geographical distribution of the earthquakes according to the way Mw is determined (see also Figure 3).

earthquakes by magnitude value and type
Figure 7: earthquakes in EPICA by magnitude value and type.

4. Comparison with SHEEC 1000-1899

EPICA contains 5703 earthquakes instead of 4722 in SHEEC 1000-1899, with 1035 new earthquakes (Table 6). In addition, the number of earthquakes supported by MDPs increased from 2447 to 3622, with a total of 49852 considered MDPs instead of 42581. The majority (696) of the added earthquakes derive from newly published sources of data. Additional 339 earthquakes from studies or catalogues already considered in SHEEC 1000-1899 are added to EPICA because of the lowered intensity/magnitude threshold or of the revised selected dataset.

As shown in Table 6, half of the 4668 earthquakes in common between EPICA and SHEEC 1000-1899 (i.e. 2332 records) derive from the same sources of data, either MDP sets (63) or catalogues (1559) or both (674), and thus present the same parameters. In addition, 2336 earthquakes that were already listed in SHEEC 1000-1899 are included in EPICA relying on a new or different set of data. In most of the cases (1963) such datasets are new, otherwise the earthquakes were already in SHEEC 1000-1899 but the reference dataset has changed to be consistent with similar cases (Table 6).
With respect to SHEEC 1000-1899, 49 earthquakes are not included in EPICA for the following reasons:

Table 6: comparison of the content and the input dataset of EPICA and SHEEC 1000-1899.
Earthquakes Total Same dataset as SHEEC New dataset
Same 2332 63 1559 710 - - -
Modified 2336 360 10 3 141 513 1309
Added 1035 27 286 26 73 133 490
Total 5703 450 1855 739 214 646 1799

The described updates and changes in the input datasets reflect in variations in the final earthquake parameters, although the strategy for their assessment is the same. Figure 8 shows a comparison of the magnitude for the earthquakes in both catalogues. In general, variations are mostly (93%) within ±0.5 Mw units, i.e. within the mean associated uncertainty which is 0.47 in EPICA. An overall decrease of the magnitudes values, up to 2.0 Mw units is observed in EPICA and mostly affects the lowest magnitudes. The reasons for such a decrease is the introduction of the new calibration of the Italian volcanic areas (IVA region) and, to a lesser extent, to the new calibration for the Apennine-Dinarides region (APD) (Figure 9). However, for earthquakes in Italy, the magnitude decrease is mostly due to the consistent amount of new macroseismic data today available (see also Figure 3 and Rovida et al., 2020). In addition, the new F-CAT17 catalogue for France accounts for the variations in the SCR (Stable Continental region) and WAP (Western Alps – Pyrenees) regions (Figure 9).

Some variations in the earthquake locations were also introduced, as a consequence of the adoption of a new input dataset, but also of corrections of some compilation errors in SHEEC 1000-1899 that affected entries from the Slovenian (Živcic, 2009) and Turkish (Soysal et al., 1981) catalogues.

comparison of the magnitudes in EPICA and SHEEC 1000-1899
Figure 8: comparison of the magnitudes in EPICA and SHEEC 1000-1899.
magnitude differences between EPICA and SHEEC 1000-1899
Figure 9: magnitude differences between EPICA and SHEEC 1000-1899 for the common earthquakes.

5. References

Albini P., Locati M., Rovida A., Stucchi M. (2013). European Archive of Historical EArthquake Data (AHEAD). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.6092/ingv.it-ahead

Ambraseys N.N., Sigbjörnsson R. (2000). Re-appraisal of the seismicity of Iceland. Earthquake Engineering Research Centre, Selfoss, June 2000, ISBN 9797-989-91-4X, 196 pp.

Azzaro R., D'Amico S., Tuvè T. (2011). Estimating the magnitude of historical earthquakes from macroseismic intensity data: new relationships for the volcanic region of Mount Etna (Italy). Seism Res Lett 82, 4, 533-544. https://doi.org/10.1785/gssrl.82.4.533.

Bakun W.H., Wentworth C.M. (1997). Estimating earthquake location and magnitude from seismic intensity data. Bull Seismol Soc Am, 87, 1502-1521.

Boborikin A.M., Gareckij R.G., Emeljanow A.P., Cildvee Ch.Ch., Cuvejedis P.I. (1993). Sowremennoye sostoyaniye seismitsheskich nablyudenhiy i ich obobshtsheniy. Semletryasseniya Belarussi i Pribaltiki, Minsk, Belorussia, 29-40.

BRGM-EDF-IRSN/SisFrance (2016). Histoire et caractéristiques des séismes ressentis en France. http://www.sisfrance.net/

Bungum H., Lindholm C.D., Dahle A. (2003). Long-period ground-motions for large European earthquakes, 1905–1992, and comparisons with stochastic predictions. J Seismol 7, 377–396.

Fäh, D., Giardini, D., Kästli, P., Deichmann, N., Gisler, M., Schwarz,-Zanetti, G., Alvarez-Rubio, S., Sellami, S., Edwards, B., Bethman, F., Woessner, J, Gassner-Stamm, G., Fritsche, S., Eberhard, D. (2011). ECOS-09 Earthquake Catalogue of Switzerland Release (2011) Report and Database. Public catalogue 17.4.2011, Swiss Seismological Service ETH Zurich, Report SED/RISK/R/001/20110417, 42 pp + Appendixes.

Gasperini P., Bernardini F., Valensise G., Boschi E. (1999). Defining seismogenic sources from historical earthquake felt reports. Bull Seism Soc Am, 89, 94-110.

Gasperini P., Vannucci G., Tripone D., Boschi E. (2010). The Location and Sizing of Historical Earthquakes Using the Attenuation of Macroseismic Intensity with Distance. Bull Seismol Soc Am, 100, 2035–2066.

Gomez Capera A.A., Rovida A., Gasperini P., Stucchi M., Viganò D. (2015). The determination of earthquake location and magnitude from macroseismic data in Europe. Bull Earthq Eng, 13, 5, 1249-1280, https://doi.org/10.1007/s10518-014-9672-3

Grigorova E., Christoskov L., Sokerova D., Rizhikova S., Roglinov A. (1978). Catalogue of earthquakes in Bulgaria and the nearby territories during the period 1st cent. BC - 1977. Geophysical Institute, Bulgarian Academy of Sciences, Sofia.

Grünthal G. (1988). Erdbebenkatalog des Territoriums der Deutschen Demokratischen Republik und angrenzender Gebiete von 823 bis 1984. Veröff. Zentralinst. Physik der Erde (99), Potsdam, 139 pp.

Grünthal G., Wahlström R. (2012). The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J Seismol, 16, 535-570, https://doi.org/10.1007/s10950-012-9302-y

Grünthal G., Wahlström R., Stromeyer, D. (2009). The unified catalogue of earthquakes in central, northern and northwestern Europe (CENEC) – updated and expanded to the last millennium, J Seismol 13, 4, 514-541, https://doi.org/10.1007/s10950-008-9144-9

Guidoboni E., Ferrari G., Mariotti D., Comastri A., Tarabusi G., Sgattoni G., Valensise G. (2018). CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.-1997) e nell’area Mediterranea (760 a.C.-1500). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.6092/ingv.it-cfti5

Guidoboni E., Ferrari G., Tarabusi G., Sgattoni G., Comastri A., Mariotti D., Ciuccarelli C., Bianchi M.G., Valensise G. (2019). CFTI5Med, the new release of the catalogue of strong earthquakes in Italy and in the Mediterranean area. Scientific Data 6, 80. https://doi.org/10.1038/s41597-019-0091-9

Hammerl Ch., Lenhardt W.A. (2013). Erdbeben in Niederösterreich von 1000 bis 2009 n. Chr. Abhandlungen Der Geologischen Bundesanstalt, Band 67, 297 pp, Wien.

Herak M. (1995). Earthquake Catalog of Croatia and adjacent Regions. Archives of the Andrija Mohorovicic Geophysical Institute, Zagreb.

Icelandic Meteorological Office (2007). Earthquakes in Iceland larger than magnitude 4 in the years 1706-1990.

Kondorskaya N.V., Shebalin N.V. (eds) (1982). New Catalogue of strong earthquakes in the USSR from Ancient Times through 1975. Report SE-31. 2nd edition, Boulder, Colorado, 608 pp.

Kondorskaya N.V., Ulomov V.I. (1999). Special earthquake catalogue of Northern Eurasia from ancient times through 1995 (SECNE). Joint Institute of Physics of the Earth (JIPE), Russian Academy of Sciences, Moscow, Russia.

Labak P., Broucek I. (1995). Catalogue of macroseismically observed earthquakes on the territory of Slovakia starting from the year 1034. Geophysical Institute of the Slovak Academy of Sciences, Bratislava.

Leydecker G. (2011). Earthquake Catalogue for Germany and Adjacent Areas for the Years 800-2008. Federal Institute for Geosciences and Natural Resources, Hannover.

LNEC (1986). A Sismicidade Histórica e a Revisão do Catálogo Sísmico. Laboratorio Nacional de Engenharia Civil, Lisboa, 189 pp.

Locati M., Rovida A., Albini P., Stucchi M. (2014). The AHEAD portal: a gateway to European historical earthquake data. Seismol. Res. Lett. 85, 3, 727-734. https://doi.org/10.1785/0220130113

Manchuel K., Traversa P., Baumont D., Cara M., Nayman E., Durouchoux C. (2018). The French seismic CATalogue (FCAT-17). Bull Earthquake Eng, 16, 6, 2227-2251 https://doi.org/10.1007/s10518-017-0236-1.

Martinez Solares J., Lopez Arroyo A. (2004). The great historical 1755 earthquake, effects and damage in Spain. J Seismol 8, 275-294. https://doi.org/10.1023/B:JOSE.0000021365.94606.03

Martinez Solares J.M., Mezcua Rodriguez J. (eds) (2002). Catalogo sismico de la Peninsula Iberica (880 a.C.-1990). IGN, Madrid, Monografía Núm. 18, 254 pp.

Martins I., Mendes Victor L.A. (2001). Contribuiçao para o estudo da sismicidade da regiao oeste da peninsula iberica, Universidade de Lisboa, Instituto Geofisico do Infante D. Luis, Publ. N. 25, 67 pp.

Meidow H. (1995). Rekonstruktion und Reinterpretation von historischen Erdbeben in den nördlichen Rheinlanden unter Berücksichtigung der Erfahrungen bei dem Erdbeben von Roermond am 13. April 1992. Ph.D. Thesis, University of Köln, 305 pp.

Musson R.M.W. (1994). Earthquake Catalogue of Great Britain and surroundings. British Geological Survey, Technical report WL/94/04, Edinburgh, 99 pp.

Musson R.M.W., Jimenéz M.J. (2008). Macroseismic estimation of earthquake parameters. NA4 deliverable D3, NERIES Project.

Musson R.M.W., Sargeant S.L. (2007). BGS UK Earthquake Database. Eurocode 8 seismic hazard zoning maps for the UK. British Geological Survey, Technical Report, CR/07/125.

Nikonov A.A. (1992). Distribution of maximum observed tremors and zones of possible occurrence of earthquakes in Estonia. Izvestiya, Earth Physics, 28, 430-434.

Observatoire Royal de Belgique (2010). Data files of the Observatoire Royal de Belgique. Brussels, Belgium.

Olivera C., Redondo E., Lambert J., Riera Melis A., Roca A. (2006). Els terratrèmols dels segles XIV I XV a Catalunya, Barcelona, Institut Cartogràfic de Catalunya, 407 pp.

Pagaczewski J. (1972). Catalogue of earthquakes in Poland 1000-1970 Years. Publications of the Institute of Geophysics, Polish Academy of Sciences, 51, 61 pp.

Papazachos B.C., Papazachou C. (2003). The earthquakes of Greece. Ziti publications, Thessaloniki, Greece, 286 pp.

Peláez J.A., Chourak M., Tadili B.A., Aït Brahim L., Hamdache M., López Casado C., Martínez Solares J.M. (2007). A Catalog of Main Moroccan Earthquakes from 1045 to 2005. Seism Res Lett, 78, 6, 614-621. https://doi.org/10.1785/gssrl.78.6.614

Petrosino S., De Siena L., Del Pezzo E. (2008). Recalibration of the magnitude scales at Campi Flegrei, Italy, on the basis of measured path and site and transfer functions. Bull Seism Soc Am 98, 4, 1964-1974. https://doi.org/10.1785/0120070131

Rovida A., Antonucci A. (2021). EPICA - European PreInstrumental Earthquake CAtalogue, version 1.1. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/epica.1.1

Rovida A., Locati M. (2015). Archive of Historical Earthquake Data for the European-Mediterranean Area. In: A. Ansal (ed.), Perspectives on European Earthquake Engineering and Seismology, Geotechnical, Geological and Earthquake Engineering 39, https://doi.org/10.1007/978-3-319-16964-4_14

Rovida A., Locati M., Antonucci A., Camassi R. (eds.) (2017). Italian Archive of Historical Earthquake Data (ASMI). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/asmi

Rovida A., Locati M., Camassi R., Lolli B., Gasperini P. (2020). The Italian earthquake catalogue CPTI15. Bulletin of Earthquake Engineering 18, 2953-2984. https://doi.org/10.1007/s10518-020-00818-y

Rovida A., Locati M., Camassi R., Lolli B., Gasperini P. (eds) (2016). CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia. https://doi.org/10.6092/INGV.IT-CPTI15

Shebalin N.V., Karnik V., Hadzievski D. (eds) (1974). Catalogue of earthquakes of the Balkan region. I, UNDP-UNESCO Survey of the seismicity of the Balkan region. Skopje, 600 pp.

Shebalin N.V., Leydecker G. (1998). Earthquake Catalogue for Central and Southeastern Europe 342 BC-1990 AD - Final Report to Contract ETNU - CT 93 - 0087.

Soysal H., Sipahioglu S., Kolcak D., Altinok Y. (1981). Turkye ve Cevresinin Tarihsel deprem Katalogu. TUBITAK, Proje no. TBAG 341, Istanbul, 86 pp.

Stucchi M., Rovida A., Gomez Capera A.A., Alexandre P., Camelbeeck T., Demircioglu M.B., Gasperini P., Kouskouna V., Musson R.M.W., Radulian M., Sesetyan K., Vilanova S., Baumont D., Bungum H., Fäh D., Lenhardt W., Makropoulos K., Martinez Solares J.M., Scotti O., Živčić M., Albini P., Batllo J., Papaioannou C., Tatevossian R., Locati M., Meletti C., Viganò D., Giardini D. (2013). The SHARE European Earthquake Catalogue (SHEEC) 1000-1899. J Seismol 17, 523-544, https://doi.org/10.1007/s10950-012-9335-2

Sulstarova E., Kociu S. (1975). The catalogue of Albanian earthquakes. Botim i Qendres Sizmologjike. Tirane, 223 pp.

Swiss Seismological Service (2002). ECOS - Earthquake Catalog of Switzerland. ECOS Report to PEGASOS, Version 31. 3. 2002, Appendix A: ECOS Database. SED, Zürich.

Tuvè T., D’Amico S., Giampiccolo E. (2015). A new MD-ML relationship for Mt. Etna earthquakes (Italy). Ann Geophys. 58, 6, S0657. https://doi.org/10.4401/ag-6830

University of Helsinki (2007). Catalog of earthquakes in Northern Europe (FENCAT) 1375-. https://www.seismo.helsinki.fi/bulletin/list/catalog/Scandia_updated.html

Vilanova S.P., Fonseca J.F.B.D (2007). Probabilistic Seismic-Hazard Assessment for Portugal. Bull Seism Soc of Am, 97, 5, 1702-1717. https://doi.org/10.1785/0120050198

ZAMG (2010). AEC2010. Austrian Earthquake Catalogue - A List of Felt Earthquakes. Computer-file compiled by the Department of Geophysics, Zentralanstalt fuer Meteorologie und Geodynamik, Vienna, Austria.

Živcic M. (2009). Earthquake Catalogue of Slovenia. http://gis.arso.gov.si/atlasokolja/profile.aspx?id=Atlas_Okolja_AXL@Arso

Zsìros T., Mónus P., Tóth L. (1988). Hungarian Earthquake Catalog (456-1986). Geodetic & Geophysical Research Institute, Budapest, 182 pp.